Topological Degree for Mean Field Equations on S
نویسنده
چکیده
Equation (1.1)ρ is called the mean field equation because it often arises in the context of statistical mechanics of point vortices in the mean field limits. Recently, there has been interest in (1.1)ρ because it also arises from the Chern-Simons-Higgs model vortex theory when some parameter tends to zero. (For these recent developments, we refer the readers to [5], [2], [3], [10], [11], [13], [14], [18], [19], [21], [22], and the references therein.) Clearly, equation (1.1)ρ is the Euler-Lagrange equation of the nonlinear functional
منابع مشابه
On ev-degree and ve-degree topological indices
Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the evdegree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be used as possible tools in QSPR researches . In this paper we d...
متن کاملMean field theory of assortative networks of phase oscillators
Employing the Kuramoto model as an illustrative example, we show how the use of the mean field approximation can be applied to large networks of phase oscillators with assortativity. We then use the ansatz of Ott and Antonsen [Chaos 19, 037113 (2008)] to reduce the mean field kinetic equations to a system of ordinary differential equations. The resulting formulation is illustrated by applicatio...
متن کاملOn the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملQSPR Analysis with Curvilinear Regression Modeling and Topological Indices
Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...
متن کامل-
In this paper we give some characterizations of topological extreme amenability. Also we answer a question raised by Ling [5]. In particular we prove that if T is a Borel subset of a locally compact semigroup S such that M(S)* has a multiplicative topological left invariant mean then T is topological left lumpy if and only if there is a multiplicative topological left invariant mean M on M(S)* ...
متن کامل